ElectroDim

Электричество в доме

Закон степени трех вторых для диода

Для диода, работающего в режиме объемного заряда, анодный ток и анодное напряжение связаны нелинейной зависимостью, которая на основании теоретических расчетов приближенно выражается так называемым законом степени трех вторых: /а = диа3/2, где коэффициент дзависит от геометрических размеров и формы электродов, а также от выбранных единиц.

Анодный ток пропорционален анодному напряжению в степени 3/2, а не в первой степени, как в законе Ома. Если увеличить, например, анодное напряжение вдвое, то анодный ток возрастает примерно в 2,8 раза, т. е. станет на 40 % больше, чем должен быть по закону Ома. Таким образом, анодный ток растет быстрее, нежели анодное напряжение.

Графически закон степени трех вторых изображается кривой линией, которая называется полукубической параболой.

Закон степени трех вторых справедлив для положительных анодных напряжений, меньших напряжений насыщения.

Если расшифровать коэффициент д в законе степени трех вторых, то этот закон для диода с плоскими электродами следует писать так:

iа = 2,33 · 10-6(Qа /d2а. к)Uа3/2,

где Qа – площадь анода, dа. к – расстояние «анод – катод».

Для диодов с электродами другой формы в постоянный коэффициент вводятся некоторые поправки, а Qа представляет собой действующую поверхность анода, т. е. ту поверхность, которая принимает на себя основной электронный поток. В этой формуле ток получается в амперах, если напряжение взято в вольтах, а Qа и d2ак.выражены в любых одинаковых единицах, например в квадратных миллиметрах. Ток обратно пропорционален квадрату расстояния «анод – катод». Уменьшение этого расстояния резко увеличивает этот анодный ток.

Закон степени трех вторых, несмотря на свою неточность, полезен, так как он в наиболее простой форме учитывает нелинейные свойства электронной лампы.

Рассмотрим вывод формулы закона степени трех вторых для диода с плоскими электродами. Будем считать, что объемный заряд q, в который входят все электроны, летящие к аноду, расположен так близко к катоду, что расстояние между этим зарядом и «анодом» можно принять равным расстоянию анод – катод dа.к. Если время пролета электронов вдоль расстояния dа.к. равно t, то величина анодного тока равна: ia, = q/ t.

Заряд q можно выразить через анодное напряжение и емкость анод – катод Сак: q = Са.к. Uа.

При этом для емкости Са.к. имеем формулу: Са.к. = ?0Qа / dа.к., где ?0 = 8,86 · 10-16Ф/м – диэлектрическая проницаемость вакуума, а Qа – площадь анода. Время пролета t определим через среднюю скорость: t= dа. к. / ?ср, но ?ср = v/2, где v – конечная скорость.

В действительности вследствие неоднородности поля средняя скорость несколько меньше, чем определенная по вышеуказанным формулам.

Вследствие приближенности вывода постоянный коэффициент в этом выражении несколько завышен. Более строгий вывод дает более точное значение постоянного коэффициента, но этот вывод также основан на допущениях, не соответствующих действительности. В частности, начальная скорость электронов полагается равной нулю, а распределение потенциала принимается таким, как в режиме насыщения, хотя закон степени трех вторых относится только к режиму объемного заряда.

Смотрите также

Советуем почитать
Бондарь Е. С, Кривцевич В. Я. Современные бытовые электроприборы и машины. – М.: Машиностроение, 1987. Вайиштейн Л. И. Памятка населению по электробезопасности. – М.: Эиергоатомиздат, 198 ...

Электрические измерения и метрологические положения
...

Принятые сокращения
АВР  – Автоматическое включение резерва АГП  – Автомат гашения поля АЛАР  – Автоматическая ликвидация асинхронного режима АОПН  – Автоматическое ограничение повышения напряжения ...